# Fibonacci Numbers
$
F_i =
\begin{cases}
0 & i = 0, \\
1 & i = 1, \\
F_{i-1} + F_{i-2} & i \ge 2
\end{cases}
$
With [[golden-ratio]] defined as $\phi$, and its conjugate $\hat\phi$.
$
F_i = \frac{\phi^i - {\hat\phi}^i}{\sqrt5}
$
Since $\left|\hat\phi\right| < 1$, we also have
$
F_i = \left\lfloor\frac{\phi^i}{\sqrt5} + \frac12\right\rfloor
$
## Solution
- Utilize [[generating-function]].
- Map each term to polynomial, i.e. define a sequence $\sum_i F_ix^i$.
- Rewrite the recurrence relation, and solve for the $x$.
- Plug $x$ back in to derive $F_i$.