# Flow Network
-
## Definition
- _capacity function_: $c(u, v) \ge 0$
- _source_ $s$ and _sink_ $t$, so that $\exists s \leadsto v \leadsto t$
$\forall v \in V$.
- _flow_: $f: V \times V \to \mathbb R$
- $0 \le f(u, v) \le c(u, v)$
- $\displaystyle\sum_{v\in V} f(v, u) = \sum_{v\in V}f(u, v)\; \forall u \in V - \{s, t\}$
- $f(u, v) = 0\; \forall (u, v) \notin E$
- _supersource_ and _supersink_